UCI researchers awarded $2.27 million to create novel diabetes treatments

L-R: Eliott Botvinick, Jonathan Lakey and Weian ZhaoGrants will support islet cell transplantation and insulin sensor projects

Two UC Irvine research groups have received $2.27 million from the JDRF to develop innovative methods of treating and possibly curing Type 1 diabetes.

The JDRF, formerly the Juvenile Diabetes Research Foundation, awarded one grant to Jonathan Lakey, associate professor of surgery and biomedical engineering, and Elliot Botvinick, assistant professor of surgery and biomedical engineering; and another to Weian Zhao, assistant professor of pharmaceutical sciences and biomedical engineering. Lakey and Zhao are affiliated with the campus’s Sue & Bill Gross Stem Cell Research Center.

With $1.27 million in funding over three years, Lakey and Botvinick will try to find a way to successfully transplant encapsulated, stem cell-created pancreatic islets. In Type 1 diabetes, the pancreas cannot produce insulin – a hormone key to regulating carbohydrate and fat metabolism in the body – making daily insulin treatments necessary.

The pancreas, an organ about the size of a hand, is located behind the lower part of the stomach. It makes insulin and enzymes that help the body digest and use food. Throughout the pancreas are clusters of cells called the islets of Langerhans. Islets are composed of several types of cells, including beta cells that make insulin.

In a previous study, Lakey helped show that transplanted encapsulated islets can create and secrete insulin. A major hurdle, though, is overcoming immune-system rejection of these transplanted islets.

The Lakey-Botvinick team – which includes researchers and products from UC Irvine, the University of Oxford, the Netherlands’ University of Groningen, Eastern Virginia Medical School, Islet Sheet Medical in San Francisco, Islet Sciences in New York and Danish pharmaceutical company Novo Nordisk – will explore the use of isolated islets in which the cells are encased in an ultrapure algae membrane.

Read More

Image Gallery